
PHYSICAL REVIEW E JANUARY 2000VOLUME 61, NUMBER 1
Roughening and preroughening transitions in crystal surfaces with double-height steps

Jae Dong Noh*
Department of Physics, University of Washington, Seattle, Washington 98195-1560

~Received 12 April 1999!

We investigate phase transitions in a solid-on-solid model where double-height steps as well as single-height
steps are allowed. Without the double-height steps, repulsive interactions between up-up or down-down step
pairs give rise to a disordered flat phase. When the double-height steps are allowed, two single-height steps can
merge into a double-height step~step doubling!. We find that the step doubling reduces repulsive interaction
strength between single-height steps and that the disordered flat phase is suppressed. As a control parameter a
step doubling energy is introduced, which is assigned to each step doubling vertex. From transfer matrix type
finite-size-scaling studies of interface free energies, we obtain the phase diagram in the parameter space of the
step energy, the interaction energy, and the step doubling energy.

PACS number~s!: 64.60.2i, 68.35.Rh, 05.70.Fh
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Much attention has been paid to the phase transition
crystal surfaces since they show rich critical phenomena.
interplay between roughening and reconstruction result
interesting phases, such as a disordered flat~DOF! phase, as
well as flat and rough phases@1#. In the DOF phase the
surface is filled with macroscopic amount of steps which
disordered positionally but have up-down order. Seve
solid-on-solid~SOS! type models have been studied, whi
reveals that the DOF phase is stabilized by the repuls
step-step interactions@2–4# or by specific topological prop
erties of surfaces, e.g., Si~001! @5#.

The SOS type model studies have been done in c
where the nearest-neighbor~NN! height differenceDh is re-
stricted to be equal to or less than 1 in units of the latt
constant. However, in real crystals there also appear s
with uDhu.1. For example, double-height steps on W~430!
become more favorable than single-height steps at high t
peratures since they have lower kink energy@6#. In this paper
we investigate the phase transitions in crystal surfaces in
presence of the double-height steps withuDhu52, especially
focusing on the stability of the DOF phase. We study a g
eralized version of the restricted solid-on-solid~RSOS!
model on a square lattice with the Hamiltonian given in E
~2!. We study the model under the periodic and antiperio
boundary conditions, from which various interface free en
gies are defined. The interface free energy is calculated f
numerical diagonalizations of the transfer matrix, and
phase diagram is obtained by analyzing their finite-si
scaling~FSS! properties.

In the RSOS model the surface is described by integ
valued heightshr at each siter5(n,m) on a square lattice
~The lattice constant in thez direction is set to 1.! Only the
single-height step (S step! with uDhu51 is allowed. It was
found that the RSOS model with NN and next-neare
neighbor ~NNN! interactions between height displays t
DOF phase when the NNN coupling strength is large eno
@2#. The NNN coupling accounts for the repulsive intera
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tions between parallel~up-up or down-down! step pairs. Par-
allel step pairs cost more energy than antiparallel~up-down
or down-up! step pairs.

The double-height step (D step! is incorporated into the
RSOS model by relaxing the restriction on the NN heig
difference touDhu50,1,2. We only consider quadratic NN
and NNN interactions between heights since they are su
cient to describe the key feature of the phase transitions.
total Hamiltonian is written as

H05K (
^r ,r8&

~hr2hr8!
21L (

(r ,r9)
~hr2hr9!

2, ~1!

where^& and () denote the pair of NN and NNN sites. Wi
this Hamiltonian, aD step costs more energy than two sep
rateS steps by an amount of 2K14K per unit length. Even
though theD steps are energetically unfavorable, we w
show that their effect is not negligible. We also conside
step-doubling energyED to study the effect of the step dou
bling. It is assigned to each vertex where twoS steps merge
into a D step~see Fig. 1!. The electronic state at step edg
may be different from that at a flat surface, which contribu
to the step energy. When twoSsteps merge into aD step, the
electronic state near the vertex may be changed. The ch
leads to an additional energy cost, which is reflected byED .
WhenED is positive~negative!, it suppresses~enhances! the
step doubling. The Hamiltonian includingH0 and the step-
doubling energy is then given by

H5H01EDND , ~2!

whereND is the total number of step-doubling vertices.~For
notational convenience the energy is measured in uni
kBT.! The model with the Hamiltonian Eq.~2! with ED50

al
FIG. 1. Step doubling vertices.
77 ©2000 The American Physical Society
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78 PRE 61JAE DONG NOH
and with the restrictionuDhu50,1 will be referred to as the
RSOS3 model, and the model with the Hamiltonian Eq.~2!
and with uDhu50,1,2 will be referred to as the RSOS
model.

In a continuum description phase transitions in crys
surfaces are described by the sine-Gordon model

H5E d2rF1

2
KG~¹f!22 (

q51

`

uq cos~2qpf!G , ~3!

wheref(r )P(2`,`) is a real-valued local average heig
field, KG the stiffness constant, anduq the fugacity of q
charge@7#. In the renormalization group senseu1 is irrel-
evant at high temperatures where the model renormalize
the Gaussian model with a renormalized stiffness cons
KG,p/2 describing the rough phase. As temperature
creases,u1 becomes relevant at a roughening transition te
perature. There appear two kinds of low temperature pha
depending on the sign ofu1: For positiveu1 the Hamiltonian
favors an integer average height and hence the surface is
For a negativeu1 it favors a half-integer average heigh
Since the microscopic height is integer-valued, the surf
can take the half-integer average height by forming st
with up-down order, i.e., the surface is in the DOF phase.
temperature decreases further, the sign ofu1 changes and the
surface falls into the flat phase. At the roughening transit
between the rough phase and the flat or DOF phase,
renormalized stiffness constant takes the universal valu
p/2. The flat and DOF phases are separated by the prero
ening transition characterized byu150 @7#.

The phase boundaries can be obtained using FSS pro
ties of the interface free energies. Consider the model o
finite N3M square lattice rotated by 45° under the vario
boundary conditions~BC’s!: The periodic BC,h(n1N,m)
5h(n,m)1a with integera, and the antiperiodic BC,h(n
1N,m)52h(n,m)1a(mod 2) witha50 and 1. They will
be referred to as (6,a) BC’s @the upper~lower! sign for the
~anti!periodic BC’s#. The free energy is obtained from th
largest eigenvalue of the transfer matrix. Detailed descrip
of the transfer matrix setup can be found in Refs.@2,5#. The
boundary conditions except for the (1,0) BC induce a frus-
tration in the surface. The interface free energyhk is defined
as the excess free energy per unit length under thek BC with
k5(6,a) from that under the (1,0) BC:

hk52
1

M
ln

Zk

Z(1,0)
~4!

with Zk the partition function satisfying thek BC.
The interface free energies have characteristic FSS p

erties in each phase. In the rough phase they show the
versal 1/N scaling in the semi-infinite limitM→` as

h (1,a)5
z

2

KGa2

N
1oS 1

ND ~5!

h (2,a)5
pz

4N
1oS 1

ND , ~6!

whereKG<p/2 is the renormalized stiffness constant of t
Gaussian model andz is the aspect ratio of the lattice con
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stants in the horizontal and vertical directions@2,8#. In the
flat phaseh (1,a) and h (2,1) are finite because at least on
step is induced under the (1,a) and (2,1) BC’s, while
h (2,0) is exponentially small inN since the (2,0) BC may
not induce any steps@2#. In the DOF phase the (2,1) BC
does not induce any frustration in the step up-down ord
but the (1,a) and (2,0) BC’s do. Soh (2,1) is exponentially
small in N, andh (1,a) andh (2,0) are finite@2#. From these
FSS properties the roughening points can be estimated f

h (1,1)5
pz

4N
, ~7!

where the universal value ofKG5p/2 at the roughening
transition used in Eq.~5!. The preroughening points betwee
the flat and the DOF phase can be estimated from the cr
ing behaviors ofNh (2,0) or Nh (2,1) , which converges to
zero in one phase and diverges to infinity in the other ph
asN grows.

The estimation of transition points using the interface fr
energies suffers from slow convergence due to correction
the scaling. They may smooth out the crossing behavior
Nh (2,0) and Nh (2,1) at the preroughening transitions fo
smallN. But one can safely cancel out leading corrections
scaling by taking the ratio or the difference of them, whi
can be seen as follows. Consider the lattice version of
continuum model in Eq.~3!. It is obvious, using the trans
formationf→f21/2, that the model under the (2,0) BC is
the same as that under the (2,1) BC with uq replaced by
2uq for odd q. It yields the relation

h (2,0)~u1 ,u2 ,u3 , . . . !5h (2,1)~2u1 ,u2 ,2u3 , . . . !.
~8!

So if one neglects all higher order contributions fromuq>3,
the location ofu150 is found from the conditionh (2,0)
2h (2,1)50 or R51 with

R[
h (2,0)

h (2,1)
. ~9!

It is not influenced by correction-to-scalings fromu2. There-
fore the relationR51 can be used to get theu150 point
more accurately. One can easily see thatR.1 for negative
u1 and R,1 for positiveu1. It approaches 1 in the roug
phase and at the preroughening transition points, diverge
the DOF phase, and vanishes in the flat phase asN→`.

In the RSOS3 model the exact point withu150 is known
along the lineL50 @7#. It is called the self-dual point and i

located atK5KSD5 ln@ 1
2(A511)#. From numerical studies

of the RSOS3 model transfer matrix, we could obtain t
exact value ofKSD with error less than 10212 by solvingR
51 even with small system sizeN54, which indicates that
R is a useful quantity to determine the preroughening tran
tion points accurately. It will be used in the analysis of t
RSOS5 model.

We first consider the RSOS5 model in a special case
ED50 and compare its phase diagram with that of t
RSOS3 model to have insight into the role of theD step. At
low temperatures theD step is unfavorable due to larger fre
energy cost than theS step. So the nature of the low tem
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PRE 61 79ROUGHENING AND PREROUGHENING TRANSITIONS IN . . .
perature phase in the RSOS5 model is not different from
in the RSOS3 model, i.e., the flat phase. At high tempe
tures, the surface is in the rough phase in the RSOS3 mo
Since the rough phase is critical and there is no character
length scale, there will be no difference betweenS and D
steps. So the RSOS5 model will also have the rough phas
a high temperature phase. There is significant differenc
intermediate temperature range, where the repulsive ste
teractions stabilize the DOF phase in the RSOS3 mo
Without theD steps the parallel steps have less meande
entropy than antiparallel ones. It is energetically unfavora
for parallel steps to approach each other closer than the
teraction range while antiparallel steps can approach e
other at will @2#. However, if one allows theD step, two
parallelS steps can approach each other and form aD step
without the interaction energy cost. Provided that the ene
cost of theD step is not too high, the presence of theD step
reduces repulsive interaction strength effectively and
hances the meandering entropy of parallel steps. Then it
suppress the DOF phase.

To see such effects quantitatively, we calculate the ratiR
for the RSOS3 model and the RSOS5 model withED50
along a lineL55K ~see Fig. 2!. The strip width for the
transfer matrix isN54, 6, 8, and 10 for the RSOS3 mod
andN54, 6, and 8 for the RSOS5 model. The RSOS3 mo
displays the roughening and the preroughening transit
along the lineL55K, which is manifest in Fig. 2~a!. There
are three regions whereN dependence ofR is distinct with
each other. The surface is in the rough phase with nega
u1 in the smallL ~high temperature! region, whereR ap-
proaches 1 from above. And the surface is in the DOF~flat!
phase for the intermediate~large! L region, whereR grows
~vanishes!. The roughening and preroughening transiti
points are estimated from Eq.~7! andR51 with R in Eq. ~9!,
respectively, which are represented by broken vertical lin

The situation changes qualitatively in the RSOS5 mod

FIG. 2. The ratioR defined in the text for the RSOS3 model~a!
and the RSOS5 model~b! along the lineL55K. The rough, DOF,
and flat phases are denoted by R, DOF, and F, respectively. (h for
N54, s for N56, n for N58, and¹ for N510.!
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As can be seen in Fig. 2~b!, R is always less than 1, and ther
are only two regions with distinctN dependence ofR. In the
small L regionR approach 1 from below, and in the largeL
region R vanishes asN increases. They correspond to th
rough phase with positiveu1 and the flat phase, respectivel
The roughening transition point is estimated from Eq.~7!
and represented by the broken vertical line. It shows that
DOF phase is suppressed in the presence of theD step. We
have also checked thatR is always less than 1 (u1.0) and
the DOF phase does not appear at any values ofK andL in
the RSOS5 model withED50.

We can argue the reason why the DOF phase disappe
the presence of theD step as follows. Consider two paralle
S steps merging at a vertex. If theD step is not allowed, the
possible vertex configuration is as shown in Fig. 3~a! and the
energy cost for such configuration is 2K14L. On the other
hand, if theD steps is allowed, the step doubling may occ
in two ways as shown in Fig. 3~b! with the energy cost 3K
15L. Though the step doubling costs more energy (K1L),
entropic contribution of the step doubling (2 ln 2) may lower
the free energy of parallel steps below than the value with
the step doubling. Our numerical results above show that
step doubling suppresses the DOF phase entirely in theED
50 case. In our model aD step costs more energy than tw
separateS steps. The two energy scales may be compara
to each other in a more realistic model, where the supp
sion effect will be stronger.

From the above arguments, one finds that the step d
bling plays an important role in phase transitions. So
introduce a new termEDND in Eq. ~2! with the step-doubling
energyED and study the phase diagram in the parame
space (K,L,ED). WhenED,0.0 (.0.0), the step doubling
is favored~suppressed!. One can easily expect that the DO
phase does not appear for negativeED .

For positiveED the step doubling is suppressed and t
effect of the step interaction becomes important. So we
pect there appears the DOF phase in the positiveED side of
the parameter space. In Fig. 4 we show the ratioR for
e2ED50.2 and along the lineL55K. Though the conver-
gence is not good, compared with Fig. 2~a!, one can identify
three regions as the rough, DOF, and flat phases from thN
dependence ofR. The roughening point between the roug
phase and the DOF phase is estimated using Eq.~7!, and the
preroughening point usingR51 for N58. They are denoted
by broken vertical lines.

We obtain the phase diagram in the whole parame
space using the conditionsh (1,1)5pz/4N for the roughen-
ing transition boundary andR51 for the preroughening tran
sition boundary. It is obtained for strip widthN54, 6, and 8.
Since the maximumN we can handle is small, the conve
gence of the phase boundary is poor especially as one

FIG. 3. Comparison of configurations of two parallel ste
which cost the interaction energy~a! and from aD step~b!. S ~D!
steps are denoted by single~double! arrows.
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80 PRE 61JAE DONG NOH
proachese2ED50. But there is no qualitative change
shape. So we only present the phase diagram obtained
N58 in Fig. 5. The region under the surface represented
broken lines corresponds to the rough phase. The DOF p
is bounded by the surfaces of broken lines and solid lin
The region above the surfaces corresponds to the flat ph
One should notice that there is a critical value ofED , ap-
proximately 0.071, smaller than which the DOF phase d
not appear.

In summary, we have studied the phase transitions in
RSOS5 model with the Hamiltonian in Eq.~2! with D steps
as well asSsteps. We have found that theD step, which has
not been considered in previous works, plays an impor
role in phase transitions in crystal surfaces. The presenc

FIG. 4. The ratioR for the RSOS5 model with the step doublin
energye2ED50.2 along the lineL55K. (h for N54, s for N
56, andn for N58.!
nd
m
y
se

s.
se.

s

e

nt
of

the D step reduces the strength of the repulsive interac
between parallel steps through the step doubling, and he
suppresses the DOF phase. We also found that the s
doubling energy is an important quantity which characteri
a surface upon the roughening.
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FIG. 5. The phase diagram of the RSOS5 model in
(K,L,e2ED) parameter space. The roughening transition lines
denoted by broken lines and the preroughening transition lines
solid lines.
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