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Roughening and preroughening transitions in crystal surfaces with double-height steps
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We investigate phase transitions in a solid-on-solid model where double-height steps as well as single-height
steps are allowed. Without the double-height steps, repulsive interactions between up-up or down-down step
pairs give rise to a disordered flat phase. When the double-height steps are allowed, two single-height steps can
merge into a double-height stégtep doubling We find that the step doubling reduces repulsive interaction
strength between single-height steps and that the disordered flat phase is suppressed. As a control parameter a
step doubling energy is introduced, which is assigned to each step doubling vertex. From transfer matrix type
finite-size-scaling studies of interface free energies, we obtain the phase diagram in the parameter space of the
step energy, the interaction energy, and the step doubling energy.

PACS numbgs): 64.60—i, 68.35.Rh, 05.70.Fh

Much attention has been paid to the phase transitions itions between paralléLp-up or down-downstep pairs. Par-
crystal surfaces since they show rich critical phenomena. Thallel step pairs cost more energy than antipardlig-down
interplay between roughening and reconstruction results ior down-up step pairs.
interesting phases, such as a disordered Bi&F) phase, as The double-height stepY step is incorporated into the
well as flat and rough phasé4]. In the DOF phase the RSOS model by relaxing the restriction on the NN height
surface is filled with macroscopic amount of steps which arglifference to|Ah|[=0,1,2. We only consider quadratic NN
disordered positionally but have up-down order. Severafnd NNN interactions between heights since they are suffi-
solid-on-solid(SO9 type models have been studied, which cient to de_scn_be t_he ke_y feature of the phase transitions. The
reveals that the DOF phase is stabilized by the repulsiv&t@l Hamiltonian is written as
step-step interaction®—4] or by specific topological prop-
erties of surfaces, e.g.,(®0D1) [5]. Ho=K > (h,—h,)2+L >, (h,—h»? (1

The SOS type model studies have been done in cases (r,r’) (r,r")
where the nearest-neighb®N) height differencerh is re- where() and () denote the pair of NN and NNN sites. With

stricted to be equal to or less than 1 in units of the IatticethiS Hamiltonian, 2D step costs more energy than two sepa-

: ' . e'?gteSsteps by an amount ofkk+ 4K per unit length. Even
with |Ah[>1. For example, double-height steps or480 though theD steps are energetically unfavorable, we will

become more favorable than single-height steps at high tenyy, .y that their effect is not negligible. We also consider a
peratures since they have lower kink enel§ly In this paper step-doubling energp to study the effect of the step dou-
we investigate the phase transitions in crystal surfaces in thgiing. |t is assigned to each vertex where t&steps merge
presence of the double-height steps wilth|=2, especially  into aD step(see Fig. 1 The electronic state at step edges
focusing on the stability of the DOF phase. We study a genmay be different from that at a flat surface, which contributes
eralized version of the restricted solid-on-sol{&@SOS to the step energy. When tv@steps merge into B step, the
model on a square lattice with the Hamiltonian given in Eq.electronic state near the vertex may be changed. The change
(2). We study the model under the periodic and antiperiodideads to an additional energy cost, which is reflecte&py
boundary conditions, from which various interface free enerWhenEp, is positive(negative, it suppressegenhancesthe
gies are defined. The interface free energy is calculated froratep doubling. The Hamiltonian includirtd, and the step-
numerical diagonalizations of the transfer matrix, and thedoubling energy is then given by
phase diagram is obtained by analyzing their finite-size-
scaling(FSS properties. H=Ho+EpNp, 2

In the RSOS model the surface is described by integer- ) ) )
valued heights, at each site =(n,m) on a square lattice. WhereNp is the total number of step-doubling verticéSor
(The lattice constant in thedirection is set to 3.0nly the ~ notational convenience the energy is measured in unit of
single-height step§ step with |[Ah|=1 is allowed. It was KgsT-) The model with the Hamiltonian Ed2) with Ep=0
found that the RSOS model with NN and next-nearest-
neighbor (NNN) interactions between height displays the
DOF phase when the NNN coupling strength is large enough h+1 h h+1
[2]. The NNN coupling accounts for the repulsive interac- h

h-1 h-1
*Present address: Center for Theoretical Physics, Seoul National

University, Seoul 151-742, Korea. FIG. 1. Step doubling vertices.
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and with the restrictiodAh|=0,1 will be referred to as the stants in the horizontal and vertical directidi&8]. In the
RSOS3 model, and the model with the Hamiltonian E).  flat phase» . ) and 5 ) are finite because at least one
and with |Ah|=0,1,2 will be referred to as the RSOS5 step is induced under thet+(a) and (—,1) BC's, while

model. 7(- o) is exponentially small irN since the ¢,0) BC may
In a continuum description phase transitions in crystalnot induce any stepg2]. In the DOF phase the—{,1) BC
surfaces are described by the sine-Gordon model does not induce any frustration in the step up-down order,

. but the (+,a) and (—,0) BC’s do. Son_ ;) is exponentially
1 small inN, and » and n,_ o are finite[2]. From these
_ 2. = 2_ ' (+.a) (-0
H_f d%r 2KG(V¢) qgl ugcod2qm¢)|, (3 FSS properties the roughening points can be estimated from

where ¢(r) e (—,%) is a real-valued local average height _m{
field, Kg the stiffness constant, ang, the fugacity ofq TN N (7)
charge[7]. In the renormalization group sensg is irrel-
evant at high temperatures where the model renormalizes where the universal value dg==/2 at the roughening
the Gaussian model with a renormalized stiffness constantansition used in Eq5). The preroughening points between
Kg<m/2 describing the rough phase. As temperature dethe flat and the DOF phase can be estimated from the cross-
creasesil; becomes relevant at a roughening transition teming behaviors ofN#_ 5 or N»_ 1), which converges to
perature. There appear two kinds of low temperature phase®ro in one phase and diverges to infinity in the other phase
depending on the sign af;: For positiveu; the Hamiltonian asN grows.
favors an integer average height and hence the surface is flat. The estimation of transition points using the interface free
For a negativeu, it favors a half-integer average height. energies suffers from slow convergence due to corrections to
Since the microscopic height is integer-valued, the surfacéhe scaling. They may smooth out the crossing behaviors of
can take the half-integer average height by forming stepdlin_ 5 and N7 ;) at the preroughening transitions for
with up-down order, i.e., the surface is in the DOF phase. AsmallN. But one can safely cancel out leading corrections to
temperature decreases further, the sigo;o€hanges and the scaling by taking the ratio or the difference of them, which
surface falls into the flat phase. At the roughening transitiorcan be seen as follows. Consider the lattice version of the
between the rough phase and the flat or DOF phase, theontinuum model in Eq(3). It is obvious, using the trans-
renormalized stiffness constant takes the universal value dbrmation$— ¢— 1/2, that the model under the-(0) BC is
m/2. The flat and DOF phases are separated by the prerougthe same as that under the (1) BC with uy replaced by
ening transition characterized oy =0 [7]. —Uq for odd g. It yields the relation

The phase boundaries can be obtained using FSS proper-
ties of the interface free energies. Consider the model on a  7(— 0)(U1,Uz,Uz, .. .) =7 1)(—Ug,Uz, —Us, .. .).
finite NX M square lattice rotated by 45° under the various (8)
boundary conditiongBC’s): The periodic BC,h(n+N,m) ) ) o
—h(n,m)+a with integera, and the antiperiodic BO(n So if one neglects all hlgher order contrlbutlong frogy. 5,
+N,m)=—h(n,m)+a(mod 2) witha=0 and 1. They will the location ofu;=0 is found from the conditiorny _
be referred to as¥,a) BC's [the upper(lowen sign for the ~— 7(-.n=0 orR=1 with
(antiperiodic BC'd. The free energy is obtained from the
largest eigenvalue of the transfer matrix. Detailed description R= M_ (9)
of the transfer matrix setup can be found in R¢855]. The 7(-.1)
boundary conditions except for the-(0) BC induce a frus- ) ) . _
tration in the surface. The interface free energyis defined !t IS notinfluenced by correction-to-scalings frar. There-

as the excess free energy per unit length undextB€ with ~ fore the relationR=1 can be used to get the =0 point
x=(=,a) from that under the €,0) BC: more accurately. One can easily see tRat1 for negative

u; and R<1 for positiveu;. It approaches 1 in the rough

1 Z. phase and at the preroughening transition points, diverges in
n="ynz (4 the DOF phase, and vanishes in the flat phash-asc.
(+0) In the RSOS3 model the exact point with=0 is known
with Z, the partition function satisfying the BC. along the lineL=0 [7]. It is called the self-dual point and is

The interface free energies have characteristic FSS propecated atk =K gp=In[3(\/5+1)]. From numerical studies
erties in each phase. In the rough phase they show the unif the RSOS3 model transfer matrix, we could obtain the

versal 1N scaling in the semi-infinite limiM —o as exact value oK sp with error less than 10" by solvingR
5 =1 even with small system si2¢=4, which indicates that
:£ Kea i R is a useful quantity to determine the preroughening transi-
N+ a) +0 5) . : ; . :
2 N N tion points accurately. It will be used in the analysis of the
RSOS5 model.
_Tr_§+ 1 5 We first consider the RSOS5 model in a special case of
-2~ 2N "IN/ 6) Ep=0 and compare its phase diagram with that of the

RSOS3 model to have insight into the role of hestep. At
whereKg=< /2 is the renormalized stiffness constant of thelow temperatures thB step is unfavorable due to larger free
Gaussian model and is the aspect ratio of the lattice con- energy cost than th8& step. So the nature of the low tem-



PRE 61 ROUGHENING AND PREROUGHENING TRANSITIONS IN . .. 79
1.4 T T T T h+1 h+2 h
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(a) (b)
06 R. FIG. 3. Comparison of configurations of two parallel steps
0.0 01 02 03 0.4 05 which cost the mteracu_on enerdg) and from aD step(b). S (D)
L steps are denoted by sindldouble arrows.

1.0 P — As can be seen in Fig(B), Ris always less than 1, and there
are only two regions with distindl dependence dR. In the
smallL regionR approach 1 from below, and in the large
region R vanishes ad\ increases. They correspond to the

= 08F rough phase with positive; and the flat phase, respectively.
R The roughening transition point is estimated from Eg).
: and represented by the broken vertical line. It shows that the

0.6 ! ! P DOF phase is suppressed in the presence obtlstep. We

0.0 0.1 0.2 0.3 04 0.5 have also checked th&is always less than 1 ug>0) and

L

FIG. 2. The ratioR defined in the text for the RSOS3 moda)
and the RSOS5 modéb) along the lineL =5K. The rough, DOF,
and flat phases are denoted by R, DOF, and F, respectivélyo(
N=4, O for N=6, A for N=8, andV for N=10,)

the DOF phase does not appear at any valugs ahdL in
the RSOS5 model witlE,=0.

We can argue the reason why the DOF phase disappear in
the presence of thB step as follows. Consider two parallel
Ssteps merging at a vertex. If the step is not allowed, the
possible vertex configuration is as shown in Figa)&and the

perature phase in the RSOS5 model is not different from thagnergy cost for such configuration i«24L. On the other

in the RSOS3 model, i.e., the flat phase. At high temperahand, if theD steps is allowed, the step doubling may occur
tures, the surface is in the rough phase in the RSOS3 modéh two ways as shown in Fig.(B) with the energy cost B
Since the rough phase is critical and there is no characteristi¢ 5L. Though the step doubling costs more enerigy+-(L),

length scale, there will be no difference betwegmand D

entropic contribution of the step doubling-(n 2) may lower

steps. So the RSOS5 model will also have the rough phase #3e free energy of parallel steps below than the value without
a high temperature phase. There is significant difference ithe step doubling. Our numerical results above show that the
intermediate temperature range, where the repulsive step istep doubling suppresses the DOF phase entirely irEthe
teractions stabilize the DOF phase in the RSOS3 modek=0 case. In our model B step costs more energy than two
Without theD steps the parallel steps have less meanderingeparates steps. The two energy scales may be comparable
entropy than antiparallel ones. It is energetically unfavorabléo each other in a more realistic model, where the suppres-
for parallel steps to approach each other closer than the irsion effect will be stronger.

teraction range while antiparallel steps can approach each From the above arguments, one finds that the step dou-

other at will [2]. However, if one allows thé step, two
parallel S steps can approach each other and fori® step

bling plays an important role in phase transitions. So we
introduce a new terreEpNp in Eq. (2) with the step-doubling

without the interaction energy cost. Provided that the energgnergy Ep and study the phase diagram in the parameter

cost of theD step is not too high, the presence of Destep

space K,L,Ep). WhenERp<0.0 (>0.0), the step doubling

reduces repulsive interaction strength effectively and enis favored(suppressed One can easily expect that the DOF
hances the meandering entropy of parallel steps. Then it wilhhase does not appear for negatiss.

suppress the DOF phase.

For positiveEp the step doubling is suppressed and the

To see such effects quantitatively, we calculate the Rtio effect of the step interaction becomes important. So we ex-

for the RSOS3 model and the RSOS5 model wih=0
along a lineL=5K (see Fig. 2 The strip width for the

pect there appears the DOF phase in the posHiyeside of
the parameter space. In Fig. 4 we show the raidor

transfer matrix isN=4, 6, 8, and 10 for the RSOS3 model e Ep=0.2 and along the liné. =5K. Though the conver-
andN=4, 6, and 8 for the RSOS5 model. The RSOS3 modegence is not good, compared with FigaR one can identify
displays the roughening and the preroughening transitionthree regions as the rough, DOF, and flat phases fronNthe

along the lineL=5K, which is manifest in Fig. @). There
are three regions wheid dependence oR is distinct with

dependence oR. The roughening point between the rough
phase and the DOF phase is estimated using Bgand the

each other. The surface is in the rough phase with negativereroughening point using=1 for N=8. They are denoted

u; in the smallL (high temperatureregion, whereR ap-
proaches 1 from above. And the surface is in the D)
phase for the intermediat¢arge L region, whereR grows

by broken vertical lines.
We obtain the phase diagram in the whole parameter
space using the conditiong, 1y=7{/4N for the roughen-

(vanishes The roughening and preroughening transitioning transition boundary an@=1 for the preroughening tran-

points are estimated from E7) andR=1 with Rin Eq. (9),

sition boundary. It is obtained for strip widthi=4, 6, and 8.

respectively, which are represented by broken vertical linesSince the maximunN we can handle is small, the conver-
The situation changes qualitatively in the RSOS5 modelgence of the phase boundary is poor especially as one ap-
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FIG. 4. The raticR for the RSOS5 model with the step doubling
energye F0=0.2 along the linedL=5K. (O for N=4, O for N
=6, andA for N=8.)

“E . o . FIG. 5. The phase diagram of the RSOS5 model in the
proachese™"0=0. But there is no qualitative change in (k | eEv) parameter space. The roughening transition lines are

Shape_. 30_ we only present the phase diagram obtained froganoted by broken lines and the preroughening transition lines by
N=8 in Fig. 5. The region under the surface represented b¥glid lines.

broken lines corresponds to the rough phase. The DOF phase o ]

is bounded by the surfaces of broken lines and solid linesthe D step reduces the strength of the repuIS|_ve interaction
The region above the surfaces corresponds to the flat phageetween parallel steps through the step doubling, and hence
One should notice that there is a critical valueEg§, ap- SuPPresses the DOF phase. We also found that the step-

proximately 0.071, smaller than which the DOF phase derOUb“ng energy is an importgnt quantity which characterizes
not appear ’ a surface upon the roughening.

In summary, we have studied the phase transitions in the | \would like to thank D. Kim and M. den Nijs for helpful
RSOS5 model with the Hamiltonian in E(®) with D steps  discussions. | wish to acknowledge the financial support of
as well asSsteps. We have found that tiestep, which has  Korea Research Foundation made in the program year 1997.
not been considered in previous works, plays an importarThis work was also supported by the KOSEF through the
role in phase transitions in crystal surfaces. The presence &RC program of SNU-CTP.
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